
 
 
 
 

Feasibility Studies of Quantum Enabled Annealing 
Algorithms for Estimating Terrestrial Carbon Fluxes 	

	
M.	Halem,	J.	Dorband,	S.	Lomonaco,		A.	Shehab,	A.	Radov,	N.	Tilak,	R.	Prouty,	

	K.	Brady,	G.	Nearing,	UMBC,		
J.	LeMoigne,	K.	Harrison,	C.	Pellisier,	D.	Simpson	GSFC,	P.	GenGne,	CU.	

 
 

halem@umbc.edu          jacqueline.j.lemoigne-stewart@nasa.gov 
                 

Earth Science Technology Forum 
June 14-16, 2016 

  
 
 



Outline	for	talk	
• Overview. Science motivation. Annealing History. 
(M. Halem) 

• Describe the development, testing and machine learning neural net algorithmic tool for the 
 D-Wave2X quantum annealing computer (QAC) at ARC. 
(J. Dorband, C. Pelissier, N. Tilak, S. Lomonaco, A. Shehab) 
  
• Ingest and process  2 years of OCO-2 concentrations of CO2, collect ground truth ARM and 
Ameriflux data for 3 sites, assess accuracies of CO2, train QAC NN to infer collocated CO2 fluxes 
using D-Wave NN tool and ground truth data and then apply to non collocated OCO-2 observations. 
(M. Halem, P. Gentine, A. Radov, J. Dorband, R. Prouty) 
 
• Incorporate NCAR photosynthetic parameterizations into the GSFC LIS land cover model and test 
Kalman filtering data assimilation of NEE by performing OSSEs and real CO2 fluxes.  
(K. Harrison, G. Nearing, P. Gentine, M.Halem, R. Prouty, C. Pelissier) 
 
• Provide NDVI data coverage for 2 years for the 3 test sites employing QAC NN for image 
registration. 
(J. LeMoigne, D. Simpson, A. Shehab) 



Problem	Mo0va0on:	Are	seasonal	amplitudes	of	CO2	growing?	

Graven,H.D. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 
1085-1089 (2013).   



 Why	is	biological	breathing	showing	annual	increasing	net	carbon	oscilla3ons	and	will	it	con3nue?	
	Will	satellite	observa3ons	of	surface	CO2	improve	hydrological		predic3ons	of	net	ecosystem	exchange?													
	Can	quantum	annealing	computers	effec3vely	and	efficiently		answer	the	above	two	science	problems?			
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Can we predict the Hyperventilating Biosphere? - Inez Fung Science vol 341   



History	of	Simulated	and	Quantum	Annealing		

• Annealing, is a heat and cooling process that alters the physical and chemical properties of a material 
by the diffusion of atoms within a solid material towards its equilibrium state (to increase ductility, 
reduce hardness and relieve internal stresses by minimizing the amount of Gibbs free energy). Heat 
increases the rate of diffusion by providing the energy needed to break bonds. Controlled cooling 
strengthens material by reducing to a lattice crystal structure ground state with minimum energy. 
 
• N. Metropolis, et.al., ”Equation of State Calculations by Fast Computers.” J. Chem. Phys. 21, (1953). 
 
• The Metropolis algorithm is among the ten algorithms that have had the greatest influence on the 
development and practice of science and engineering in the 20th century (Beichl& Sullivan, 2000). 
  
• W.K. Hastings, “Monte Carlo Sampling Methods Using Markov Chains and Their Applications” 
Biometrika 57 (1970).  
 
•  S. Kirkpatrick et. al., “Optimization by Simulated Annealing” Science 220 (1983). A method for 
efficient techniques for finding minimum or maximum values of a function of very many independent 
variables, usually called the cost function. 
  
• T.Kadowaki, H. Nishimori. “Quantum annealing in the Transverse Ising Model” Phys. Rev. 58 (1998). 
They proposed theory of quantum annealing; that quantum fluctuations cause transitions between states 
and play the same role as thermal fluctuations in simulated annealing for finding the minimum of a 
multivariable  objective (cost) function.   

  



DWAVE	Quantum	Computer	

DWAVE 2X at NASA AMES. 

Quantum chip with 1097 “qbits” 
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CompuGng	on	the	DWAVE	

Numerical Task: 

minO(~q) , O =
X

ij

↵ijqiqj , qi 2 (0, 1)

↵ij = user specified “couplings”.

Results: collect statistics and take the BEST 
solution. 

DWAVE searches the entire space and 
returns potential candidates for the global 
minimum. 

Numerical Task: train a RBM neural network 
using “contrastive divergence”. 
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Quantum	Annealing	Studies	
•  Implemented a quantum-based RBM on the D-Wave as a general tool for 

applications of neural nets. 
•  Evaluate the RBM tool by employing same C Code for RBM evaluations 

on classical computer. 
•  Tested a purely RBM tool  (no connections between neurons/qubits) using 

MNIST data for 100 training cases, 100 test cases. 
•  Both classical and quantum version of RBM attained an accuracy on or 

near 100% for MNIST  training data. 
•  Classical attained 70% on test data while quantum attained near 60%. 
•  Implemented Deep Learning on D-Wave; 1 to 3 hidden layers partially 

connected BM. 
•    Virtual qubits allow for more connected cost functions. Studied behavior 
      of virtual qubits, conducted stochastic measurements of qubit chains,  
      compared to theoretical qubit chain behavior, appears to be stable. 



A Prototype RBM Evaluation using  MNIST  

• Classifying	hand-wriQen	digits	
from	the	MNIST	dataset	into	10	
classes.	
• Each	sample	is	a	28x28	gray-scale	
image.	
• We	used	100	samples	for	training	
and	100	samples	for	tesGng	our	
RBM	model.	
• RBM	used	had	794	input	nodes	
and	1100	hidden	nodes.	



Classic	vs	Quantum	RBMs	
Learning	Profiles	

100 training cases 
100 test cases 



ObservaGon	Regions	

•  3	primary	regions	selected	for	observaGons:	
•  Barrow,	(69.0,-162.0)	(71.4,-152.0),Oklahoma	City,	(34.5,-99.5)(36.5,	-96.5),	K34,	Brazil	(-3.6,	-61.5)	(-1.6,	-59.0)	

•  OCO2	–	OrbiGng	Carbon	Observatory	2	Launched	July	of	2014.	Level	2	lite	data	has	been	collected	and	processed	
										since	September	of	2014	and	sGll		being	collected	daily.	
•  DOE	–	Atmospheric	RadiaGon	Measurment	(ARM)	
									Carbon	Dioxide	measurements	collected	for	all	3	sites	from	2001	unGl	July	of	2015.	
•  ONRL	Fluxnet/Ameriflux	(NASA	DAAC)	
									A	"network	of	regional	networks,"	coordinates	regional	and	global	analysis	of	observaGons	from			
								micrometeorological	tower	sites		

		

	

Barrow, Alaska K34, Brazil Oklahoma City, Oklahoma 



OCO2	Tracks	with	CO2	values	

●  The	satellite	tracks,	along	with	CO2	values	have	been	mapped	using	hQp://www.hamstermap.com/	a	google	
maps	tool,	to	help	visualize	the	data.	This	technique	allows	for	interacGve	zoom	opGons,	as	well	as	CO2	level,	
point	by	point	comparisons.			



OCO-2	Data	ValidaGon		

●  All	OCO-2	targeted	samples	fall	within	10	mile	radius	of	the	ARM	tower	
●  On	this	parGcular	case,	there	are	over	4300	targeted	samples	taken	during	the	

OCO-2	overpass	

Oklahoma City 



10/3/2014 10/30/2014 11/24/2014 1/25/2015 2/10/2015 2/19/2015 6/20/2015 7/11/2015 
4m 386.3332819 401.2256545 398.1087561 413.8416835 397.7759594 403.7240008 403.1288341 

25m 395.665179 394.6344485 404.8536971 398.2196341 410.2235257 396.5604284 397.6349329 391.7279216 

60m 390.9355092 396.8365043 429.9921762 400.8079616 399.9970837 394.4884016 390.7480839 

OCO2 395.4361724 395.7083233 398.0109639 397.398894 400.9904037 400.0255873 401.5713586 404.4339711 
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Pierre	GenGne,	Bin	Fang,	Filipe	Aires,	Catherine	Prigent,	Jana		Kolassa	

Surface carbon fluxes using neural network  

Pierre Gentine, Bin Fang, Filipe Aires, Catherine Prigent, Jana  Kolassa 
 



Training Data Set: Atmospheric Radiation Measurement 
(ARM) 

Measured	quan00es:	
1.  CO2	concentraGon	
2.  H2O	concentraGon	
3.  Temperature	
4.  Pressure	
5.  Wind	Speed	
6.  Horizontal	Wind	

DirecGon	
7.  RotaGon	to	zero	w	
8.  RotaGon	to	zero	v	
9.  CO2	Flux	
	

Measured at heights: 
1.  4 meters 
2.  16 meters 
3.  25 meters 
 
Data samples: 
30 minutes apart 
Dec 2002 – Oct 2014 
Around 180k samples. 



ARM	Data	AQributes	(At	4m)	and	Volume	
Value	 CO2	

Flux(um
ol	m-2	
s-1)	

CO2(m
mol	
m-3)	

H2O(m
mol	
m-3)	

Temper
ature(de
gree	C)	

Pressure
(kPa)	

Wind	
Speed(
m	s-1)	

horizont
al	wind	
direc0o
n	

rota0on	
to	zero	
w(theta)	

rota0on	
to	zero	
v(phi)	

Min	 -140.5	 0.0792	 0	 -17.31	 0.38	 0.158	 0.0087	 0	 0	

Max	 69.271	 139.33	 2108.7	 40.55	 100.95	 15.314	 359.99	 61.592	 180.00	

Average	 -0.626	 16.092	 688.89	 21.8193	 97.7852	 4.6211	 173.368	 1.416	 73.327	

Standard	
DeviaGon	

4.4978	 1.7935	 384.35	 9.57815	 1.6441	 2.5330	 94.668	 1.1683	 60.240	
	

10 years of ½ hour ARM measurements : 48 * 365* 10 =175,200 
 
2 years of OCO-2 CO2 at ARM station: 5 * 26 * 2 * 4000 = 1,040,000 
 
3 Sites:  Barrows, Oklahoma City, K34 Amazon 
 
Obtain Attributes from MERRA and repeat calculations with measured and observed CO2. 
 
 



PredicGon	Accuracy	of	Feed-
forward	Neural	Network	

1.	Error	for	complete	test	data	
	 Mean Error 0.065 

Error standard deviation 3.936 

Root Mean Squared Error 3.939 

2. Error for test data after removing outliers 
 

Mean Error 1.133 

Error standard deviation 4.43 

Root Mean Squared Error 4.58 



PredicGon	Accuracy	of	RBM	

1.	Error	for	complete	test	data	
	 Mean Error 12.67 

Error standard deviation 4.30 

Root Mean Squared Error 13.38 

2. Error for test data after removing outliers 
 

Mean Error 6.60 

Error standard deviation 2.62 

Root Mean Squared Error 7.10 



Current	Studies	

• It	was	pointed	out	that	NN	need	net	surface	radiaGon	as	
criGcal	input	for	inferring	CO2	fluxes.	
• The	predicGon	accuracy	for	RBMs	also	suffers	due	to	noise	in	
the	data.	ComparaGvely,	feed-forward	neural	networks	are	
more	tolerant	to	noise.	
• 	ImplemenGng	an	alternaGve	training	algorithm	for	RBM	
regression	applicaGon	other	than	contrasGve	divergence.	
• We	observed	that	the	ARM	data	is	noisy	and	contains	a	
number	of	outliers.	We	need	to	carefully	curate	this	data	or	
use	mulGple	sources	of	measurements.	



Main role of LIS in QAC project 

1.  Introduce	NCAR	photosyntheGc	parameterizaGon	into	LIS	model.	
2.  To	use	as	the	baseline	for	measuring	the	added	value	of	data	assimilaGon	
3.  As	training	data	for	a	machine-learning	observaGon	operator	
					We	have	completed	a	10-year	CONUS	run	and		a	5-year	global	run.	
1.  Noah-MP	is	NCEP’s	newest	version	of	the	WRF	with	lower	boundary	

condiGon.	It	is	1st	version	with	dynamic	carbon	parGGoning	and	fluxes.	
2.  About	1350	hours	of	CPU	Gme	per	year	of	simulaGon	at	1/8	degree	spaGal	

resoluGon,	15	minute	temporal	resoluGon.	
3.  NLDAS	parameters	and	forcing	data	for	the	CONUS	run.	
4.  GLDAS	parameters	and	Princeton	forcing	for	global	run.	
	



NASA	Land	InformaGon	System	(LIS)	

Kumar et al. (2006), Env. Modeling and Software,  Peters-Lidard et al (2007), Innovations in Systems and Software Engineering 

EnKF 
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landcover, 
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pools 



Noah	MP:	Global	run:	NEE	seasonal	cycle	



Noah-MP Data Assimilation 
Basic	Tes0ng	of	a	Kalman-Type	Data	Assimila0on	Algorithm	for	Surface	
Carbon	Flux	
•  The	basic	finding	is	that	even	the	“best-case”	scenario	(i.e.,	assimilaGon	of	

relaGvely	accurate	in	situ	observaGons)	is	difficult	because	of	the	highly-	
nonlinear	relaGonship	between	vegetaGon	and	soil	carbon	stores	and	NEE	
(net	ecosystem	exchange).	

•  Thus,	this	is	a	perfect	candidate	for	nonlinear	DA	like	what	we	are	proposing	
to	do	with	Boltzmann	Machines.	

•  We	used	Kalman-type	(locally	linear)	DA	schemes	at	10	heavily	instrumented	
FluxNet	sites	over	different	biomes	and	found	three	major	types	of	results	
(examples	of	each	in	following	slides):	

	1.  DA	worked.	In	these	cases	the	model	had	some	ability	for	realisGc	NEE.		
2.  PredicGons	had	some	bias	in	more than half of the test cases 
3.  Both	prior	and	posterior	DA	results	were	nonsense.	NEE	is	hard	to	

predict	without	accurate	model	parameterizaGon.	Model	predicGons		in	
some	locaGons	were	unrelated	to	observaGons.	

4.  AssimilaGon	strategy	worked	in 1 out of 31 cases. 
	



Noah	MP:	Site	runs	

Showing daily min 
and max as there are 
large fluctuations 
within and across 
days 

Moderate/severe drought 



Preliminary DA Results: Sensitivity Analysis 



Retrieval	Results	
(2011)	



Retrieval	Results	
(2011)	



LIS	model	needs	VegataGon	Land	Cover	

• Image	RegistraGon	Challenge:	given	two	Earth	
remotely	sensed	images,	determine	the	
transformaGon	(e.g.,	composiGon	of	translaGon	and	
rotaGon)	that	transforms	one	image	into	the	other.	

		
• Efforts	in	implemenGng	image	registraGon	on	the	D-
Wave	have	focused	on	using	neural	networks.	
	
• Other	methods	have	been	considered,	but	neural	
networks	seem	to	be	most	suited	for	the	D-Wave	
computaGon	model.	



Restricted	Boltzmann	Machine	
• A Restricted Boltzmann Machine (RBM) has been implemented 
on a conventional computer.  Test images used for the network: 
    - Ohio River (ground-based radar with artificial translations)  
    - Landsat images (with real translations and rotations) 

 
• RBM “votes” on what translations it thinks it sees in a test image 
 
• Results were met with some success, but RBM often does not 
find the correct transformation. 

• RBM has so far been implemented entirely on a conventional 
computer. Implementation entirely on the D-Wave is limited by 
D-Wave qubit capacity: images are larger than can be stored on 
the D-Wave. 



Feed-forward	Neural	Network	
• The	most	promising	approach	to	date	appears	to	be	
using	the	D-Wave	to	compute	weights	for	either	a	
convenGonal	feed-forward	arGficial	neural	network	
or	an	RBM.		This	would	use	the	D-Wave	as	a	kind	of	
co-processor	to	a	convenGonal	computer:	

– Weights	would	be	computed	on	the	D-Wave	
– Actual	feed-forward	or	RBM	network	would	be	
implemented	on	a	convenGonal	computer.	

• CompuGng	weights	through	training	is	the	most	
Gme-consuming	part	of	a	neural	network	
implementaGon,	so	this	is	a	good	place	to	leverage	
the	D-Wave	capabiliGes.	



Status	of	Quantum	Annealing	Machines	
NASA has acquired the D-Wave 2X system at ARC in collaboration with Google with more than 
1,000 working qubits that realizes quantum annealing at the hardware level. Papers seem to indicate 
that quantum annealing is indeed realized in the machine.  
IARPA has issued a solicitation for a Quantum-Enhanced Optimization program. The goal is to 
build a prototype quantum annealer of about 100 qubits with high-performance superconducting 
qubits with more complex connectivity between qubits. 
 
DOE has acquired the Dwave 2X system at LANL and set up a forum Quantum for Quants to 
discuss and present  issues related to the perspective of quantum annealing. 
 
NSF, Director France Cordova, has unveiled a 9 point research agenda to shape the agency's next 
few decades. The next quantum revolution is one of 6 research areas.			

Google has announced they are developing a gate-model quantum computation platform to simulate 
quantum annealing. It is not yet known that they have constructed a large-scale systems that can 
supersede the D-Wave machines with error-correcting codes fully implemented which can support 
large numbers of qubits. 
NIST maintains an archive of more than 200 quantum algorithms for Gate and Annealing systems 
and still growing. 

	



Projected	Quantum	Annealing	Computers:		TRL		

• D-Wave	2X	June	1,	2016	TRL	=	3	
• D-Wave	3X	June	1,	2017	TRL	=	4	
• Google	Group:	quantum	annealing	architectural	
primiGves	not	available	Est.	TRL	=	4/5	

• 		Lincoln	Labs	June	1,	2017		TRL	=		4	
• 	Lincoln	Labs	June	1,	2018		TRL	=		5	
• 	Lincoln	Labs	June	1,	2020		TRL	=		6/7	
	
	
	
	



	 	Thanks	



Quantum	Gate	comparisons	with	Quantum	Annealing		



Links	to	Data	
•  hQp://www.nasa.gov/press-release/as-earth-warms-nasa-targets-other-half-of-carbon-climate-equaGon	

•  hQp://www.arm.gov/sites	
	

•  hQp://www.archive.arm.gov/discovery/#v/results/s/fcat::carbon	
	

•  hQp://www.archive.arm.gov/discovery/#v/home/s/	
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519(7541):66–69,	2015.		

•  [8]		Stephen	Nellis.	Google,	microsow	vie	for	ucsb	top	minds	with	quantum	iniGaGves,	September	2014.	
[Online;	posted	12-September-2014].		

	



QAC	Accomplishments	on	D-Wave	To	Date	(CONT.)	
	

•  Implemented	Noah	MP	model	of	photosynthesis	into	GSFC		LIS	model	and	conducted	
								a	10	year	global		OSSE	LIS-Noah	model	run	including	Alaska	and	Amazon	of	an	OSSE	to	evaluate	
								land	surface	model	predicGons	from	OCO-2	data	assimilaGon.	(G.	Nearing,	K.	Harrison)	
	
•  TesGng	soluGon	of	observaGon	cost	funcGon	blending	of	a	3-D	variaGonal	or	Kalman	filter	formulaGon	of	

the	LIS-Noah	model	CO2	flux	predicGon	with	the	derived	CO2	flux	from	OCO-2	using	the	BM	NN	
algorithm.			(G.	Nearing,	C.	Pelissier,K.	Harrison,	P.	GenGne	).	

	
•  Performed		monthly	sun	induced	Fluoresence	calculaGon from Gome-2, ERA-Land,  
      FLUXNET-MTE	on	a	classical	feed	forward	perceptron	NN	with	cross	entropy	cost	funcGon	
							to	eliminate	outliers.	(P.	GenGne,		Columbia	U)	

•  	Performed	image	registraGon	of	MODIS	EVI	data	vegetaGon	Indices	for	3	sites	iniGally	using	classical	
neural	nets.	(J.	LeMoigne,		D.	Simpson,	GSFC)	

	
•  Developing		HAAR	wavelet	algorithm	for	image	registraGon	implementaGon	with	full	adder		on	D-

Wave.	(	A.	Shehab,	S.	Lomonaco,	J.	LeMoigne)	
	

•  SimulaGon	Studies	for	comparison	of	Gme	conGnuous	CO2flux	assimilaGon	with	D-Wave	and	classical	
computer	BM	implementaGon.	(G.	Nearing,	K.	Harrison,	R.	Prouty,	M.Halem,	GSFC,UMBC)				

	
•  Established	strong	collaboraGon	with	AMES	Quantum	AI		Lab.	Held	several	face	to	face	meeGngs	with		

their	staff	and	exchanged	progress	on	D-Wave	algorithms	and	quantum	performance.	SubmiQed	AGU	
session	on	“QAC	for	ESS	ApplicaGons”	with	T.	Lee,	R.	Biswas,	M.	Halem,	A.	OrGz	

								
				
	
	
		
	



Simulated	Annealing	and	Quantum	Annealing	

• The	phenomena	of	quantum	superposiGon	and	tunneling	imply	that	
certain	types	of	energy	landscapes	can	be	more	efficiently	explored	by	
quantum	annealing	than	classical	simulated	annealing	[1].	
• Comparison	of	quantum	annealing	and	simulated	annealing-	H.	Nishimori	
• 	Mukherjee,	S.	and	ChakrabarG,	B.K.	(2015)	MulGvariable	opGmizaGon:	
Quantum	annealing	and	computaGon.	Eur.	Phys.	J.	Special	Topics	224,	17–
24.		
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3.  A. Radov – ARM Tower data, CO2, CO2 fluxes and colocation statistics. 
 
4.  N. Talik-CO2	Flux	PredicGon	Using	Restricted	Boltzmann	Machines	
 
5.  K. Harrison- 10 year Global LIS-Noah CO2 flux predictions and NEE. 
 
6.  P. Gentine – Classical NN prediction of  Sun Fluorescence from GOME-2 

 
7.  D. Simpson- MODIS image registration using NN 

 
8.  O. Shehab –Implementation of full adder  on Dwave for HAAR Wavelets 
 
9.  M. Halem- Next 6 Months Activities 
 
 

 
 


